Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings
نویسندگان
چکیده
منابع مشابه
A New Iteration Process for Approximation of Common Fixed Points for Finite Families of Total Asymptotically Nonexpansive Mappings
Let E be a real Banach space, and K a closed convex nonempty subset of E. Let T1, T2, . . . , Tm : K → K bem total asymptotically nonexpansive mappings. A simple iterative sequence {xn}n≥1 is constructed inE and necessary and sufficient conditions for this sequence to converge to a common fixed point of {Ti}i 1 are given. Furthermore, in the case that E is a uniformly convex real Banach space, ...
متن کاملFixed points for total asymptotically nonexpansive mappings in a new version of bead space
The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...
متن کاملA new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces
In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.
متن کاملcommon fixed points of jointly asymptotically nonexpansive mappings
a definition of two jointly asymptotically nonexpansive mappings s and t on uniformly convex banach space e is studied to approximate common fixed points of two such mappings through weak and strong convergence of an ishikawa type iteration scheme generated by s and t on a bounded closed and convex subset of e. as a consequence of the notion of two jointly asymptotically nonexpansive maps, we c...
متن کاملApproximating Fixed Points of Total Asymptotically Nonexpansive Mappings
The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk [18] as a generalization of the class of nonexpansive maps. They proved that if K is a nonempty closed convex bounded subset of a real uniformly convex Banach space and T is an asymptotically nonexpansive self-mapping of K , then T has a fixed point. Alber and Guerre-Delabriere have studied in [3–5] weakly contracti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2006.09.023